Московский государственный технический университет им. Н.Э. Баумана Калужский филиал

С.С. Панаиотти, А.И. Савельев

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ОДНОСТУПЕНЧАТОГО ЦЕНТРОБЕЖНОГО НАСОСА

Учебное пособие

ОЦН(v12)

УДК 621.5 (075.8) ББК 31.56 П 16

Рецензент: канд. техн. наук А.А. Жинов

П 16 **Панаиотти С.С., Савельев А.И.** Автоматизированное проектирование одноступенчатого центробежного насоса / Учебное пособие. — Калуга. —46 с., ил. 18

Разработана математическая модель и создана программа для проектирования одноступенчатых центробежных насосов. Обоснован выбор параметрических и функциональных ограничений. Приводятся необходимые справочные данные. Параметры проточной полости оптимизируются по нескольким критериям качества. Программа расчета и проектирования на ПЭВМ функционирует в среде Microsoft Excel.

Пособие предназначено для студентов специальности «Гидромашины, гидроприводы и гидропневмоавтоматика», выполняющих домашние задание, курсовой и дипломный проекты. Оно может быть полезным специалистам, занимающихся расчетом и проектированием лопастных насосов.

Ил. 18. Табл. 2. Библиогр. 15 назв.

УДК 621.5 (075.8) ББК 31.56

© Панаиотти С.С., Савельев А.И., 2012

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

```
эффективное стеснение

 C = n\sqrt{Q}/(\Delta h/10)^{3/4} — кавитационный коэффициент
                              быстроходности (кавитационный па-
                              раметр Руднева)
                  D,d — диаметр, м
          D_O = \sqrt[3]{Q/n} — единичный диаметр
      D_0 = D_r \sqrt{1 - \overline{d}_1^2} — приведенный входной диаметр, м
         \overline{d}_1 = d_1/D_{_\Gamma} — втулочное отношение F — площадь, M^2 — площадь меридианного потока в горловине рабочего колеса, M^2 — то же при входе на лопасть, M^2
                              в горловине рабочего колеса, м<sup>2</sup>
           \overline{F}_1 = F_1 / F_0 — степень диффузорности входного
                              участка рабочего колеса
              g = 9.81 — ускорение свободного падения, м/с<sup>2</sup>
                     H — напор, м
                    H_{_{\mathrm{T}}} — удельная работа колеса
                              (теоретический напор), м
                    \Delta h — кавитационный запас, м
                     К — коэффициент проекции силы
         K_0 = D_0 / D_0 — коэффициент приведенного
                              входного диаметра
                      l_n — длина нормали, м
            m = U_1/V_1 — коэффициент режима
                     n_{_{\rm H}} — частота вращения, об/мин
n_s = 3,65 n_{\rm H} \sqrt{Q} / H^{3/4} — коэффициент быстроходности
                      р _ давление, Па
                   p_{_{\rm H,II}} — давление насыщенного
                              пара жидкости, Па
                     Q — объемная подача, расход, M^3/c
```

r, *R* — радиус, м

 rV_u — момент скорости, м 2 /с

t — температура, °С

 $U = \omega r$ — окружная (переносная) скорость, м/с

V, W — абсолютная, относительная скорость, м/с

Z — число лопастей

 α — угол абсолютного потока

β — угол относительного потока

 β_{π} — угол установки лопасти

 γ_0 — угол заострения входной

кромки лопасти

 $\delta = \beta_{1\pi} - \beta_1$ — угол атаки

 $\overline{\delta} = \delta/\beta_{1\pi}$ — относительный угол атаки

Ψ — коэффициент стеснения

η — коэффициент полезного действия

λ — число кавитации лопастной решетки,

ρ — радиус, плотность

толщина лопасти, м

 $\overline{\sigma} = \sigma/T$ — относительная толщина лопасти

 $\omega = \pi n/30$ — угловая скорость, рад/с

Индексы

вх — входа; г — гидравлический; доп — допускаемый; к — колеса; кр — критический; л — лопасти; м — механический; н — насоса; н.п — насыщенного пара; о — объемный; п — потерь; р — расчетный; ср — средний; т — теоретический; ц — центробежного колеса, центра тяжести; э — экспериментальный; m — меридианные составляющие скорости; u — окружные составляющие скорости;

0 — горловина РК, выход из ЛО; 1 — вход в РК; 2 — выход из РК; 3 — вход в отвод; I, II, III — первый, второй, третий критический режим кавитации; — относительная величина.

Сокращения

КЭ — кавитационная эрозия; ЛО — лопаточный отвод; ЛТ — линия тока; РК — рабочее колесо; ТЗ — техническое задание; ЦК — центробежное рабочее колесо.

1. РАСЧЕТ ПРОТОЧНОЙ ПОЛОСТИ НАСОСА

Одноступенчатые центробежные насосы с рабочим колесом одностороннего входа предназначены для подачи воды и других неагрессивных жидкостей. Они применяются во многих отраслях промышленности, на транспорте, в городском и сельском хозяйстве для небольших стационарных и передвижных установок.

Задача проектирования насоса — многокритериальная. Для решения этой задачи один критерий выбирается в качестве решающего, а остальные учитываются введением на них ограничений. Кроме того, вводятся параметрические и функциональные ограничения.

Для сокращения объема учебного пособия некоторые расчеты описаны весьма кратко и более подробные сведения можно найти в работе[4].

1.1 ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Гидравлическая схема одноступенчатого насоса показана на рис. 1.1, а характерные сечения проточной полости — на рис. 1.2. Техническое задание на проектирование насоса приведено в табл. 1.1. При проектировании насоса в первом приближении рекомендуется выбирать значения величин «по умолчанию». В последующем эти значения обычно уточняются.

1.2. КПД, ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ И ДИАМЕТР ВАЛА НАСОСА

Рассмотрим баланс энергии проектируемого насоса. Для разгрузки ротора от осевой силы рабочее колесо снабжено двумя щелевыми уплотнениями. Расход утечки через уплотнения рабочего колеса $q_y = q_{ye} + q_{ya}$. Расход жидкости на смазку гидродинамических подшипников, если таковые имеются, $q_{\text{подш}}$. Этот расход проходит через рабочее колёсо и возвращается во всасывающий патрубок. Потери мощности делим на механические, объемные и гидравлические.

Расчет насоса ОЦН 180-68

Nº n/n	Наименование величины	Обозначение	Размер- ность	Значение по ЛТ	Формула ил рисунок
	1. Техническое задание		ность	e c a	рисунок
			M ³ /4	180	
1	Объемная подача насоса	Q,	M ³ /c	0.05000	
2	Напор насоса	Н.,	M /C	68	
3	Частота вращения	n _H	об/мин	2980	
4	Допускаемый кавитационный запас	Δh gon	м	6,5	
5	Относительная максимальная подача насоса	Q Hmax	%	130	
6	Относительная минимальная подача насоса	Q smin	%	50	
7	Рабочая жидкость	- 7 811111		Вода	
8	Температура	t	°C	30	
9	Плотность	ρ	KF/M ³	996	
10	Кинематическая вязкость	v	CM ² /C	0,009	
11	Минимально допускаемый КПД насоса	η_{min}	Om 70	0,75	
12	Мин. ресурс между капитальными ремонтами	T	ч	30000	
13	Уровень шума на расстоянии 1 м	I _w	дБ	00000	
14	Виброскорость корпуса подшипника	L	мм/с	5	
15	Расположение вала	_		Горизонтальное	
16	Направление вращения вала со стороны входа в РК			По часовой стрелке	
17	Концевые уплотнения вала			Торцовые	
18	Форма напорной характеристики			Горцовые	
19	Крутизна напорной характеристики	χ	%		
20	Подвод насоса		74	Полуспиральный	
21				Tiony chinger landing	
		Масса электро	130003-		
		Тип приводног		-	
		электродвигате			
		электродвигате	ль		
22	Другие требования				
_	2. КПЛ потпебляемая монность и пизмото вал	Hacoca			
23	2. КПД, потребляемая мощность и диаметр вала			402	
23	Коэффициент быстроходности насоса	n _s		103	(1.17)
				103	(1.17)
23 24 25	Коэффициент быстроходности насоса	n _s		0,002	(1.17)
24 25	Коэффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса	n _s		0,002	
24 25 26	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность	n _s	кВт	0,002 0,776 42,81	(1.17)
24 25 26 27	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение	η Ν _κ [τ]	МПа	0,002 0,776 42,81	
24 25 26 27	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала	n _s		0,002 0,776 42,81	
24 25 26 27 28	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода	n _s q _{сн} η N _н [t] d _s	МПа	0,002 0,776 42,81 10 40,9	(1.10)
24 25 26 27 28	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный днаметр вала 3. Расчет подвода Относительная площадь входного патрубка	η η Ν _κ [τ] σ _*	МПа	0,002 0,776 42,81 10 40,9	(1.10)
24 25 26 27 28 29 30	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф. диаметра входного патрубка	n _s q _{cH} η N _H [τ] d _a	МПа мм	0,002 0,776 42,81 10 40,9 1,69	(1.10) (1.14) (1.15)
24 25 26 27 28 29 30 31	Коэффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф, диаметра входного патрубка Диаметр входного патрубка	n _s q̄ _{ch} η N _H [τ] d _u F̄ _{ax} K _{Dax} D _{ax}	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9	(1.10) (1.14) (1.15) (1.15)
24 25 26 27 28 29 30 31 32	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Орментировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф. диаметра входного патрубка Диаметра входного патрубка Радиус ЛТ в горловине ЦК	n s q ch η η η η η η η η η	МПа мм	0,002 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5	(1.10) (1.14) (1.15) (1.15) PHC. 1.8
24 25 26 27 28 29 30 31 32 33	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный днаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф, днаметра входного патрубка Диаметр входного патрубка Радиус ЛТ в горповине ЦК Профиль момента скорости в горловине ЦК	n _s q _{CH} η η η η η η η η η	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,4	(1.10) (1.14) (1.15) (1.15) PHC. 1.8 PHC.1.3
24 25 26 27 28 29 30 31 32 33 34	Коэффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф. диаметра входного патрубка Диаметр входного патрубка Радмус ЛТ в горловине ЦК Профиль меридианной скорости в горловине ЦК	n s q c	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,4 0,8 1,0 1,2	(1.10) (1.14) (1.15) (1.15) PHC. 1.8
24 25 26 27 28 29 30 31 32 33 34 35	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Долускаемое напряжение Орментировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Козф. диаметра входного патрубка Диаметр входного патрубка Радиус ЛТ в горловине ЦК Профиль момента скорости в горловине ЦК Относительный расход Относительный расход	n s q c s	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,4 1,000	(1.10) (1.14) (1.15) (1.15) PMC. 1.8 PMC.1.3
24 25 26 27 28 29 30 31 32 33 34 35	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф, диаметра входного патрубка Диаметра коходного патрубка Радиус ЛТ в горловине ЦК Профиль момента скорости в горловине ЦК Относительный расход Коэффициент момента скорости	n s q c	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,4 0,8 1,0 1,2	(1.10) (1.14) (1.15) (1.15) Puc. 1.8 Puc.1.3
24 25 26 27 28 29 30 31 32 33 34 35 36	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный днаметр вала 3. Расчет подвода Относительная площадь входного патрубка Козф. днаметра входного патрубка Диаметр входного патрубка Диаметр входного патрубка Радиусл Т в горповине ЦК Профиль момента скорости в горловине ЦК Относительный расход Коэффициент момента скорости 4. Расчет центробежного рабочего колеса	n s q c s	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,8 1,0 1,000 0,06	(1.10) (1.14) (1.15) (1.15) PMC. 1.8 PMC.1.3
24 25 26 27 28 29 30 31 32 33 34 35 36	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф, диаметра входного патрубка Диаметра коходного патрубка Радиус ЛТ в горловине ЦК Профиль момента скорости в горловине ЦК Относительный расход Коэффициент момента скорости	n s q c s	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,4 1,000	(1.10) (1.14) (1.15) (1.15) PMC. 1.8 PMC.1.3
24 25 26 27 28 29 30 31 32 33 34 35 36	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный днаметр вала 3. Расчет подвода Относительная площадь входного патрубка Козф. днаметра входного патрубка Диаметр входного патрубка Диаметр входного патрубка Радиусл Т в горповине ЦК Профиль момента скорости в горловине ЦК Относительный расход Коэффициент момента скорости 4. Расчет центробежного рабочего колеса	n s q c s	МПа мм	0,002 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,8 1,000 0,06	(1.10) (1.14) (1.15) (1.15) (1.15) Puc. 1.8 Puc. 1.3 (1.21)
24 25 26 27 28 30 31 32 33 34 35 36	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф, диаметра входного патрубка Радмус ЛТ в горловине ЦК Профиль момента скорости в горловине ЦК Профиль меридианной скорости в горловине ЦК Относительный расход Коэфрициент момента скорости 4. Расчет центробежного рабочего колеса Тип ЦК Коэф, запаса по кавитационному срыву	n _s q _{ch} η η η η η η η η η	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,8 1,0 1,000 0,06	(1.10) (1.14) (1.15) (1.15) Рис.1.3 Рис.1.3 (1.21)
24 25 26 27 28 29 30 31 32 33 34 35 36	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала З. Расчет подвода Относительная площадь входного патрубка Коэф, диаметр входного патрубка Диаметр входного патрубка Радиус ПТ в горловине ЦК Профиль момента скорости в горловине ЦК Относительный расход Коэффициент момента скорости 4. Расчет центробежного рабочего колеса Тип ЦК	n s q c κ η η η η η η η η η η η η η η η η η η	МПа мм	0,002 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,8 1,000 0,06	(1.10) (1.14) (1.15) (1.15) (1.15) Puc. 1.8 Puc.1.3 (1.21)
24 25 26 27 28 29 30 31 32 33 34 35 36 37	Коэффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф. диаметра входного патрубка Диаметр входного патрубка Радиус ЛТ в горловине ЦК Профиль момента скорости в горловине ЦК Относительный расход Коэффициент момента скорости 4. Расчет центробежного рабочего колеса Тип ЦК Коэф. запаса по кавитационному срыву Кавитационный коэф. быстроходности ЦК	n s q c s η η η η η η η η η	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,8 1,0 1,000 0,06	(1.10) (1.14) (1.15) (1.15) Рис.1.3 Рис.1.3 (1.21)
24 25 26 27 28 29 30 31 32 33 34 35 36 37	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Орментировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Козф. диаметра входного патрубка Диаметр входного патрубка Радиус ЛТ в горловине ЦК Профиль момента скорости в горловине ЦК Относительный расход Козффициент момента скорости 4. Расчет центробежного рабочего колеса Тип ЦК Козф. запаса по кавитационному срыву Кавитационный коэф. быстроходности ЦК	n s q c s η η η η η η η η η	МПа мм	0,002 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,8 1,0 1,000 0,06	(1.10) (1.14) (1.15) (1.15) PMC. 1.8 PHC.1.3 (1.21) PHC.1.3 (1.21)
24 25 26 27 28 29 30 31 32 33 34 35 36 37	Коэффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Ориентировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Коэф. диаметра входного патрубка Диаметр входного патрубка Радиус ЛТ в горловине ЦК Профиль момента скорости в горловине ЦК Относительный расход Коэффициент момента скорости 4. Расчет центробежного рабочего колеса Тип ЦК Коэф. запаса по кавитационному срыву Кавитационный коэф. быстроходности ЦК	n s q c s	МПа мм	0,002 0,776 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,8 1,0 1,000 0,06	(1.10) (1.14) (1.15) (1.15) Рис.1.3 Рис.1.3 (1.21)
24 25 26 27 28 29 30 31 32 33 34	Козффициент быстроходности насоса Относительный расход на собственные нужды КПД насоса Потребляемая насосом мощность Допускаемое напряжение Орментировочный диаметр вала 3. Расчет подвода Относительная площадь входного патрубка Козф. диаметра входного патрубка Диаметр входного патрубка Радиус ЛТ в горловине ЦК Профиль момента скорости в горловине ЦК Относительный расход Козффициент момента скорости 4. Расчет центробежного рабочего колеса Тип ЦК Козф. запаса по кавитационному срыву Кавитационный коэф. быстроходности ЦК	n s q c s η η η η η η η η η	МПа мм	0,002 42,81 10 40,9 1,69 5,9 149,9 61,5 46,1 21,5 1,4 1,0 0,8 1,0 1,000 0,06	(1.10) (1.14) (1.15) (1.15) Pric. 1.8 Pric. 1.3 (1.21) Pric. 1.4 (1.35)

N₂ n/n	Наименование величины	Обозначение	Размер-		ачение по Л	IT a	Формула или
		_	ность	θ	рисунок		
43	Коэффициент проекции силы	к			Рис. 1.6		
44	Эффективное стеснение	a c. 103				(1.45)	
45	Коэффициент приведенного входного диаметра	Κο			Рис. 1.6		
46	Диаметр горловины	D,	мм		123,1	4,5	(1.47)
47	Диаметр втулки	d,	мм		43,1		(1.47)
48	Степень диффузорности входного участка ЦК	F.			,.	1,14	(1.51)
49	Приведенный кавитац. коэф. быстроходности ЦК	Ē,				1,14	(1.01)
50	Параметр толщины входной кромки на средней ЛТ	S _{1c}					
51	Коэффициент режима	m _c					(1.52)
52	Число лопастей первого ряда	Z ₁					
53	Толщина входной кромки на средней ЛТ		мм		(1.48)		
54		σ _{1c}			1,8		
_	Оптимальный по λ_{min} угол атаки на средней ЛТ	δ _{ont.c}	градус		13,0		(1.53)
55	Выбранный угол атаки на средней ЛТ	δς	градус			3,5	(1.54)
56	Угол установки лопасти на средней ЛТ	β _{1nc}	градус		23,0		(1.54)
57	Приближенный коэффициент стеснения на входе	Ψ <u>1</u> ε			0,87		(1.56)
58	Относительный радиус по покрывному диску	ρ,				0,975	(1.57)
59	Угол	ξ	градус			68	(1.61)
60	Макс. относительная площадь на повороте	Fnmax			1,30		(1.63)
61	Относительная площадь на повороте	F _n				1,11	(1.58)
62	Угол наклона основного диска	ϵ_a	градус			0	
63	Координата торца входной воронки	z _o	мм			24	Рис. 1.8
64	Ширина на выходе	b ₂	мм			19	
65	Радиус по покрывному диску	ρ,	мм		25,0		(1.58a)
66	Радиус по основному диску	ρα	мм		38.9		(1.586)
67	Параметр наклона основного диска	В	мм		Рис. 1.8		
68	Угол наклона покрывного диска	εο	градус			Рис. 1.8	
69	Параметр наклона покрывного диска	A	мм			Рис. 1.8	
70	Осевая длина меридианной проекции	l _z	мм		Рис. 1.8		
71	Радиус средней ЛТ в горловине	r _c	мм	46.1			Рис. 1.8
72	Радиус средней ЛТ на повороте	ren	MM	48.0			Рис. 1.8
	- agry o spegmen /// Ha Hobopote	/ en	MM	61,5 48,4 26,6			РИС. 1.0
73	Радиус вдоль входной кромки	r ₁	мм	61,5 48,4 26,6			
74	Площадь при входе на лопасти	F ₁	MM ²	10437	11899	11899	
75	Показатель степени	n				1	
76	Угол установки лопасти	β _{1n}	градус	16	23	45	
77	Угол атаки	δ					
			градус	1,6	2,8		
70				1,6		4,0	(1.29), (1.30)
78	Толщина входной кромки лопасти	σ ₁	градус		2,8 1,8	4,0	(1.29), (1.30)
78	Толщина входной кромки лопасти Максимальная толщина лопасти	σ1	мм	1,8	1,8	4,0	
	Максимальная толщина лопасти	σ ₁		1,8	1,8	4,0 1,8 5	(1.50)
79	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе	σ ₁ σ _{max} Ψ ₁	мм	1,8 5 0,86	1,8 5 0,88	4,0 1,8 5 0,88	(1.50) (1.56)
79	Максимальная толщина лопасти	σ_1 σ_{max} ψ_1 $\sigma_{\mathcal{E}}$	MM MM	1,8 5 0,86 4	1,8 5 0,88	4,0 1,8 5 0,88	(1.50) (1.56) Puc. 1.7
79 80 81 82	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол	σ_1 σ_{max} ψ_1 σ_{ε} $\mu_{A\varepsilon}$	мм мм мм градус	1,8 5 0,86 4 30	1,8 5 0,88 4 40	4,0 1,8 5 0,88 4 50	(1.50) (1.56) Рис. 1.7 Рис. 1.7
79 80 81 82 83	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти	σ ₁ σ _{max} Ψ ₁ σ _E μ _{AE} γ ₀	MM MM	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4	4,0 1,8 5 0,88 4 50 3,8	(1.50) (1.56) Puc. 1.7
79 80 81 82 83 84	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны	σ ₁ σ _{max} Ψ ₁ σ _ε μ _{AE} γ ₀ η η η	мм мм градус градус	1,8 5 0,86 4 30	1,8 5 0,88 4 40 3,4 0,5	4,0 1,8 5 0,88 4 50	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации	σ ₁ σ _{max} Ψ ¹ σ _E μ _{AE} γ ₀	мм мм мм градус	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57	4,0 1,8 5 0,88 4 50 3,8	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны	σ ₁ σ _{max} Ψ ₁ σ _ε μ _{AE} γ ₀ η η η	мм мм градус градус	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86	Максимальная толщина лопасти Прибликенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК	σ ₁ σ _{max} Ψ1 σ _E μ _{AE} γ ₀ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ Λ	мм мм градус градус	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87	Максимальная толщина лопасти Прибликенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол зострения лопасти Относительная толщина каверны Кавитационный залас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК	$\begin{array}{c} \sigma_{max} \\ \sigma_{max} \\ \psi_{1} \\ \sigma_{\varepsilon} \\ \mu_{AE} \\ \gamma_{0} \\ \overline{h}_{m} \\ \Delta h_{lax} \\ I_{\varepsilon} \\ \end{array}$	мм мм градус градус м мПа	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Сталь 2X13 620	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК	$\begin{array}{c} \sigma_1 \\ \sigma_{max} \\ \psi_1 \\ \sigma_{\mathcal{E}} \\ \mu_{A\mathcal{E}} \\ \gamma_0 \\ \overline{h}_{m} \\ \Delta h_{inx} \\ \overline{I}_{\kappa} \\ \end{array}$	мм мм градус градус	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Ctanb 2X13 620 440	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88 89	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК Параметр Тирувенгадама	$\begin{matrix} \sigma_{1} \\ \sigma_{max} \\ \psi_{1} \\ \sigma_{g} \\ \mu_{Ag} \\ \gamma_{0} \\ \bar{h}_{m} \\ \Delta h_{1ax} \\ I_{\kappa} \\ \sigma_{a} \\ \sigma_{\tau} \\ a \end{matrix}$	мм мм градус градус м мПа	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Сталь 2X13 620	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88 89 90	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК Параметр Тирувенгадама Относительный параметр КЗ		мм мм градус градус м мПа	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Ctanh 2X13 620 440 0,0005	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88 89 90 91	Максимальная толщина лопасти Прибликенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК Предел текучести материала ЦК Параметр Тирувенгадама Относительный параметр КЭ Коэффициент свойств материала	σ ₁ σ _{max} ψ ₁ σ _ε ψ ₁ σ _ε μ _{AE} γ ₀ η̄ _m Δh _{i,ax} i _κ σ _a σ _τ	мм мм градус градус м мПа	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Ctanb 2X13 620 440	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88 89 90	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК Параметр Тирувенгадама Относительный параметр КЗ	σ ₁ σ _{max} ψ ₁ σ _ε ψ ₁ σ _ε μ _{AE} γ ₀ η̄ _m Δh _{i,ax} i _κ σ _a σ _τ	мм мм градус градус м мПа	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Ctanh 2X13 620 440 0,0005	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88 89 90 91	Максимальная толщина лопасти Прибликенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК Предел текучести материала ЦК Параметр Тирувенгадама Относительный параметр КЭ Коэффициент свойств материала		мм мм градус градус м мПа	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Cranь 2X13 620 440 0,0005	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК Предел текучести материала ЦК Параметр Тирувенгадама Относительный параметр КЭ Коэффициент свойств жидкости	σ ₁ σ _{max} ψ ₁ σ _ε ψ ₁ σ _ε μ _{AE} γ ₀ η̄ _m Δh _{i,ax} i _κ σ _a σ _τ	мм мм градус градус м мПа	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Cranь 2X13 620 440 0,0005	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	Максимальная толщина лопасти Приближенный коэффициент стеснения на входе Толщина лопасти на начальном участке Угол Угол заострения лопасти Относительная толщина каверны Кавитационный запас начала кавитации Относительная длина каверны Материал ЦК Предел техучести материала ЦК Параметр Тирувенгадама Относительный параметр КЭ Коэффициент свойств жидкости Сторона лопасти	σ ₁ σ _{max} Ψ, σ _ε μ _{Aε} γο h _m Δh _{i ax} I _κ σ _a σ _τ α W, W _n	мм мм градус градус м м мПа	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76	4,0 1,8 5 0,88 4 50 3,8 0,4 Cranь 2X13 620 440 0,0005	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Максимальная толщина лоласти Прибликенный коэффициент стеснения на входе Толщина лоласти на начальном участке Угол Угол зострения лоласти Относительная толщина каверны Кавитационный залас начала кавитации Относительная длина каверны Материал ЦК Временное сопротивление материала ЦК Предел текучести материала ЦК Предел текучести материала ЦК Спрасмет тирувентадама Относительный параметр КЗ Коэффициент свойств материала Коэффициент свойств жидкости Сторона лоласти Скорость кавитационной эрозии	σ _{max} ψ ₁ σ _{max} ψ ₁ σ _ε μ _{AE} γ ₀ ρ̄ _m Δh _{I ss} I _κ σ _s σ _τ σ _s σ _s σ _τ σ _s σ _s	мм мм градус градус мм мп мп а мп а мп а мп а мп а мп а мп	1,8 5 0,86 4 30 3,8	1,8 5 0,88 4 40 3,4 0,5 7,57 0,76 0,51	4,0 1,8 5 0,88 4 50 3,8 0,4 Cranь 2X13 620 440 0,0005	(1.50) (1.56) Puc. 1.7 Puc. 1.7 Puc. 1.7

Продолжение табл. 1.1

N₂	U		Размер-	3н	IT	Формула или	
n/n	Наименование величины	Обозначение	ность	e c a			рисунок
99	Оптимальная ширина ЦК на выходе	b ₂onτ	мм	20,3	17,8	16,4	
100	Оптимальный наружный диаметр ЦК	D 2ont	мм	236,3	243,7	242,2	
101	Входной радиус второго ряда лопастей	R' ₁	мм				
102	Число лопастей второго ряда	Z ₂					
103	Параметр	R ₁ /R ₂		0,52	0,41	0,23	
104	Параметр	$(R_1/R_2)^{z/2}$		0,10	0,04	0,01	
105	Угол установки лопасти на выходе	β _{2n}	градус	22	22	22	
106	Коэффициент прозрачности	k		0	0	0	
\vdash							Рис. 1.9
107	Коэффициент активного радиуса	у					
108	Толщина выходной кромки	σ ₂	мм	0,82	0,82	0,82	Рис. 1.10
109	Коэффициент стеснения на выходе	Ψ2	mm	0.93	0,93	0,93	(1.74)
	Наружный радиус	R ₂	мм	120,9	120,9	120,9	(1.66)
111	Расходный параметр на расчетном режиме	9 p	MM	120,5	0,263	120,9	(1.00)
112	Степень диффузорности относительного потока	W,			0,815		(1.71)
113	Относительная площадь на выходе из ЦК	F ₂			1,383		(1.71)
-	Коэффициент реактивности ЦК	ρ			0,737		(1.71)
-	Коэффициент напора насоса	H ₁			0,469		(1.72)
	5. Расчет спирального отвода	,1	-		-,.00		(
116	Коэффициент ширины отвода	m 3				0,05	
117	Ширина входа в отвод	b ₃	мм		31,1	-,55	Рис. 1.11
\vdash			-		133,3		Рис. 1.11
118	Входной радиус	. R ₃	мм		,.		1 40. 1.11
119	Угол между языком и расчетным сечением	Φρ	градус			345	Рис. 1.11
120	Сечение спирального канала	,,,	1.4				
121	Относительная высота расчетного сечения	h _o /R ₃					
122	Угол наклона трапеции	α	градус				
123	Высота расчетного сечения	h _p	мм	62,6			Рис. 1.11
124	Коэф. диаметра выходного патрубка	1					
124	козф. диаметра выходного патруска	K _{D Bыx}				3,52	
125	Диаметр выходного патрубка	D _{Bых}	мм		90,2		Рис. 1.11
126	Угол раскрытия эквивалентного диффузора	γ,	градус				
127	Длина диффузора	l _A	мм		196,8		Рис. 1.11
128	Степень расширения диффузора	n _A			2,1		
129	Скорость на выходе из диффузора	V _{Bыx}	м/с		7,8		
130	Минимальная толщина языка	σ _{3min}	мм		6,3		
131	Выбранная толщина языка	σ_3	мм			3	Рис. 1.11
132	Сторона конструкторского квадрата	а	мм		15,7		
_	Радиус	ρ1	мм		141,2		
$\overline{}$	Радиус	ρ2	мм		156,8		
	Радиус	ρ3	мм		172,5		
136	Радиус	ρ ₄	мм		188,1		
<u></u>	6. Эскизное проектирование насоса						
-	Эскизное проектирование насоса выполняется любы	и доступным сп	особом (вр	учную или с	помощью А	utoCAD, Soli	dWorks)
-	7. Потери энергии и КПД насоса						
407	7.1. Расчет уплотнения рабочего колеса на ведо			4			
137	Диаметр щели уплотнения	D _{y1} , D _{y2} , D _{y3}	ММ	140			Рис 1.14
138	Радиальный зазор щели уплотнения	δ_{v1} , δ_{v2} , δ_{v3}	мм	0,25			Рис 1.14
140	Длина щели уплотнения Эквивалентная шероховатость	l _{y1,} l _{y2,} l _{y3}	мм	20		0,01	Рис 1.14
140	оконвалентная шероховатость	Δ _v	мм		0,549	0,01	(4.04)
141	Коэффициент расхода уплотнения	μ			0,549		(1.84)
142	Относительный расход утечки	q,	%		3,5		
143	Нормативный относительный расход утечки	- q у - q _{у.норм}	%		3,1		
	7.2. Расчет уплотнения рабочего колеса на веду	шем диске			-,-		
144	Диаметр щели уплотнения	D _{v1} , D _{v2} , D _{v3}	мм	140			Рис 1.14
145	Радиальный зазор щели уплотнения	δ_{v1} , δ_{v2} , δ_{v3}	мм	0,25			Рис 1.14
146	Длина щели уплотнения	l _{y1} , l _{y2} , l _{y3}	мм	20			Рис 1.14
147	Эквивалентная шероховатость	Δ _ν	мм	100	-	0,01	,
		v				-,-1	

Окончание табл. 1.1

N2 n/n	Наиме	Наименование величины				Обозначение		Размер- ность		Значение по ЛТ				Формула или рисунок			
						-		ность	+	0	0,54	•	a	<u>-</u>	_		
147	Коэффициент расхода уплотнения						μ		\vdash		0,54	9		(1	.84)		
148	Относительный расход утечки							q _v %		+		3,5					
149					ый расход			q	у.норм	%	\top		3,1				
					трения Ц	K											
				вой паз					,s,	мм		10	_		20		. 1.13
	Длины цилиндр. поверхностей на дисках ЦК Относит. мощность дискового трения всех ЦК							, l _u	мм	+	3			3		. 1.13	
102					трения трения п		AVOR DOT		$\bar{N}_{\tau,q}$	%			5,5			(1	.97)
153					иальный за		ikob por		I_n, δ_n	мм	_	32		50	0,06		
	Кинематическая вязкость смазки							V _n	CM ² /C	+	- 32		30	0,14			
	Плотность смазки							P _n	Kr/m ³	+				880			
156					подшипни			ΣΛ	т.подш	%	\top		1,0			(1.5)
				енты п	олезного	действи	я насоса	1									
		ически						1	ηм				0,93			(1.3)
		ный КІ							η。		1		0,93				1.7)
\rightarrow	Гидрав КПД на		кий КПД	4					η _r		+		0,89				1.8)
100			IDOBAL	ING DO	пастей Ц	(no nno	rnauuo'	"Doods	η			."	0,77	7		(1.9)
161	Строка	запус	ка прог	раммы	профилир	ования	раммо			Files\Din			nonauu	IIKMey	SE ava"		
162	Имя ф	айла д	пя пара	метров	ЦК первой	і ступени	1	-	- rogram	111031511	journ	трофили	рование		n_1.xpm		
					итацион			гики									
								n = 298	0 об/ми	н							
H, M			Hano	рная ха	рактерист	ика						Мощно	остная х	арактери	истика		
70	-	-				68,0)		N, KB	т							
60							_		50) ———	-	-	-		42,8		
50	L.								40) ———	-		_		_		
40	-								30	,							
30	-								20								
20	-	-		-		_											
10	-	-		-	-	000			10) —	_	_	_	-	0,050	_	
0	000	0.010	0.020						0		23010				•		
0,0	000	0,010	0,020	0,03	0 0,040	0,050	0,060	Q, M3/C1		0,000 0	,010	0,020	0,030	0,040	0,050	0,060	Q, M
			К	ПД-хара	ктеристик	a			Н. м.			Кавитаци	х квино	арактер	истика		
η [90]								18	70								
,80		-	-			0,777						9					_
,70	-	-	-					- 188	60		1	9					
60		+	/			-			50								
,50		/							40				-				
30								100	30				-			-	
20	-/	-						533	20					-		+	
,10	/	+	-	-		00'0			10		4 -		-			-	
,00 4		00000	2,01383	- 200		•		100	0		1			esteri, so	Calaborate		49.00
0,00		,010	0,020	0,030		0,050	0,060	Q, M3/C	0		5		10	15		20	Δh,
			<u> </u>		ачества												
$\overline{}$					роходност			C _{III BX}				1185					
					ному сры	зу			ll ax		\perp	1,40			(1	.35)	
	Относительный параметр КЭ Относительная критическая подача насоса						W_1/W_n			+	0,51						
$\overline{}$			зя крит	ическая	подача на	icoca			_{sp} /Q _∗		+		0,51				
	КПД на Козфф		, uarra-	2 0000	жуточной	emine			η		+		0,77				1.9)
			напор		тмуточной	ступени		_	H,		+		0,47		0.04		.73)
\rightarrow			уле Ша						ПУН		+		0.87	,	0,81		. 1.16
					иступени п	o EUROP	IIMD		UATI 2 G E		+		28			(1	.99)
						U EURUP	UMP		3,65		+		28		0.86		
	КПД по данным EUROPUMP							-	URO		0,86				404)		
-	Коэффициент напора по данным ВИГМ								Т _{ВИГМ} 0,49 0,52			(1.101)					

Рис 1.1. Схема (a) и баланс энергии (b) центробежного насоса:

I- подвод; 2— щелевое уплотнение на ведомом диске; 3— рабочее колесо; 4— спиральный отвод; 5— щелевое уплотнение на ведущем диске; 6 — уплотнение вала; 7 — канал для подачи перекачиваемой жидкости на смазку подшипников; 8 подшипники; 9 — вал; 10 — канал отвода перекачиваемой жидкости от подшипников

1.2.1. Механические потери

Они включают в себя потери мощности $\sum N_{\text{т.подш}}$ на преодоление трения в концевых уплотнениях вала и подшипниках. Кроме того, расходуется мощность $\sum N_{\text{т.д.}}$ на преодоление жидкостного трения обоих дисков, цилиндрических поверхностей на наружном диаметре и колец щелевых уплотнений рабочих колёс.

Мощность механических потерь:

$$N_{\rm M} = \sum N_{\rm \tiny T.\PiOJIII} + \sum N_{\rm \tiny T.J.}, \qquad (1.1)$$

Оставшаяся мощность $N_{\scriptscriptstyle \Gamma}$ передается рабочими колесами проходящей через них жидкости и называется *гидравлической мощностью насоса*. Если объемный расход через рабочее колесо $Q_{\scriptscriptstyle \! K}$, а теоретический напор ступени $H_{\scriptscriptstyle \! T}$ то гидравлическая мощность рассматриваемого насоса:

$$N_{\rm r} = \rho g Q_{\rm K} H_{\rm T} = \rho g (Q_{\rm H} + q_{\rm v} + q_{\rm nomin}) H_{\rm T}.$$
 (1.2)

Механический КПД насоса

$$\eta_{\rm M} = \frac{N_{\rm r}}{N_{\rm H}} \,, \tag{1.3}$$

где потребляемая насосом мощность

$$N_{\rm H} = N_{\rm r} + N_{\rm M} \,. \tag{1.4}$$

Так как $\eta_{\rm m} = (N_{\rm H} - N_{\rm m})/N_{\rm H} = 1 - N_{\rm m}/N_{\rm H}$, то

$$\eta_{\rm M} = 1 - \left(\sum \overline{N}_{\rm \tiny T.ПОДШ.} + \sum \overline{N}_{\rm \tiny T.Д} \right). \tag{1.5}$$

Каждое из слагаемых в скобках представляет собой отношение потерянной мощности к мощности на валу насоса. Ее численное значение позволяет судить о влиянии соответствующей величины на механический КПД насоса. Так, уменьшение дискового трения на 1% на столько же увеличивает механический КПД насоса.

1.2.2. Объемные потери

Объемный расход жидкости $q_y = q_{ye} + q_{ya}$ из области высокого давления на выходе из рабочего колеса через щелевые уплотнения на

диске колеса возвращается на его вход и уносит энергию $\rho g q_{\rm y} H_{\scriptscriptstyle \rm T}$. Поэтому объемная потеря мощности $N_{\rm o} = \rho g q_{\rm y} H_{\scriptscriptstyle \rm T}$. После вычитания этой мощности из гидравлической получим мощность, сообщаемую полезному расходу жидкости:

$$N' = \rho g Q_{\rm H} H_{\rm T} \,. \tag{1.6}$$

Объемные потери учитываются *объемным КПД насоса*, который равен отношению мощности, сообщаемой полезному расходу жидкости, к гидравлической:

$$\eta_{\rm o} = N'/N_{\rm r} \ . \tag{1.7}$$

1.2.3 Гидравлические потери

При движении жидкости в проточной полости насоса на преодоление гидравлического сопротивления подвода, рабочих колес и отвода затрачивается мощность.

Эти потери оцениваются *гидравлическим КПД насоса*, который представляет собой отношение полезной мощности к мощности, сообщаемой насосом полезному расходу жидкости:

$$\eta_{\Gamma} = N_{\Pi}/N'$$
.

Гидравлический КПД оценивается по формуле Ломакина [5]:

$$\eta_{\Gamma} = 1 - 0.42 / (\lg D_0 - 0.172)^2$$
, (1.8)

в которой D_0 подставляется в мм.

На основании приведенных выше уравнений КПД насоса можно представить как произведение:

$$\eta = \frac{N_{\rm II}}{N_{\rm H}} = \frac{N_{\rm r}}{N_{\rm H}} \frac{N'}{N_{\rm r}} \frac{N_{\rm II}}{N'} = \eta_{\rm M} \eta_{\rm o} \eta_{\rm r}. \tag{1.9}$$

Далее переходим к расчету насоса (табл.1.1). Одновременно выполняется профилирование лопастей по программе [12].

Потребляемая насосом мощность

$$N_{\rm H} = N_{\rm II}/\eta \,. \tag{1.10}$$

Коэффициент быстроходности насоса

$$n_{s} = 3,65n_{\rm H}\sqrt{Q_{\rm H}}/H^{3/4}. \tag{1.11}$$

1.3. РАСЧЕТ ПОДВОДА

По расходу

$$Q = \left(1 + \overline{q}_{\rm CH}\right)Q_{\rm H} \tag{1.12}$$

Рис. 1.2. Характерные сечения проточной полости одноступенчатого центробежного насоса:

 Π — подвод; PK — рабочее колесо; CK — спиральный канал

определяется единичный диаметр

$$D_Q = \sqrt[3]{Q/n_{\rm H}} \ . \tag{1.13}$$

Назначается относительная площадь входного патрубка

$$\overline{F}_{\text{BX}} = F_{\text{BX}} / F_0 = 1,65$$
 (1.14)

Соответствующий коэффициент диаметра входного патрубка

$$K_{D_{\text{BX}}} = D_{\text{BX}} / D_Q \tag{1.15}$$

Площадь и скорость на выходе из подвода:

$$F_0 = F_{\text{BX}} / \bar{F}_{\text{BX}} ,$$
 (1.16) $V_0 = Q_1 / F_0 .$

По данным [13] коэффициент сопротивления подвода

$$\zeta_{\text{подв}} =
\begin{cases}
0.75 / \overline{F}_{\text{вх}}^2, & \text{если коленообразный или кольцевой;} \\
0.07, & \text{если конфузор.}
\end{cases}$$
(1.17)

Потери энергии

$$h_{\text{IL HOUR}} = \zeta_{\text{HOUR}} V_0^2 / 2g. \tag{1.18}$$

Диаметр входного патрубка принят равным

$$D_{\rm BX} = 125 \, \text{MM}$$
.

Для насосов с *прямоосным конфузорным подводом* предполагаем, что момент скорости и меридианная скорость в горловине ЦК распределены равномерно, а поток не подкручивается подводом и задаем

$$\overline{(rV_u)}_{0e,c,a} = 1, \ \overline{(V_{0m})}_{e,c,a} = 1, \ \kappa = 0.$$
 (1.19)

Если насос имеет *полуспиральный подвод*, то можно приближенно учесть неравномерное распределение меридианных скоростей и момента скорости по окружности выхода из отвода. Предполагаем, что в соответствии с данными [7] эти величины в сечении 0-0 изменяются вдоль радиуса как показано на рис.1.3. На рисунках безразмерная меридианная скорость $\overline{V}_{0m} = V_{0m}/V_{0mcp}$, где меридианная скорость на произвольном радиусе r равна V_{0m} , а средняя скорость $V_{0mcp} = Q_{\kappa}/F_0$. Заданный профиль меридианной скорости должен удовлетворять следующему условию: подсчитанный по профилю скорости интегральный объемный расход Q_0 должен равняться расходу $Q_1 = Q_{\rm H} + q_{\rm ch}$. Соответствующие расчеты можно найти в работе [4]. Безразмерный момент скорости $\overline{(rV_u)}_0 = (rV_u)_0/(rV_u)_{0c}$. Утечка через переднее уплотнение рабочего колеса подкручивает основной поток, увеличивая средний момент скорости в сечении 0-0. Как показано в работе [4], средний момент скорости с учетом подкрутки будет:

$$(rV_u)_{0c} = [q_y \omega D_y / 8 + Q_1 (rV_u)_{\text{подв}}]/(Q_1 + q_y).$$
 (1.20)

При этом средний момент скорости на выходе из подвода

$$(rV_u)_{\text{подв}} = \left\{ \kappa \sqrt[3]{Q_1^2 n_{_{\text{H}}}} \right.$$
 (1.21)

Так что

$$\overline{\left(rV_{u}\right)}_{0\;e,c,a} = 1,4;\;1;\;0,4,\;\;\overline{\left(V_{0m}\right)}_{e,\;c,\;a} = 0,8;\;1,0;\;1,2\;.$$
 (1.22)

При предварительных расчетах коэффициент момента скорости для кривоосных или прямоосных полуспиральных подводов выбираем

$$\kappa \approx 0.05. \tag{1.21}$$

Если насос снабжен *кольцевым подводом*, то принимаем распределение меридианных скоростей по уравнению (1.22) и полагаем $\kappa = 0$.

Рис. 1.3. Треугольники скоростей, безразмерные поля меридианной скорости и момента скорости в горловине рабочего колеса:

Дополнительные данные для полуспиральных подводов приведены в работе [2], размещенной на сайте [15].

Если входная кромка рабочего колеса, располагается в горловине, как у колеса типа 1, то можно считать, что распределение безразмерных меридианных скоростей и моментов скорости в сечениях 1-1 входной кромки такое же, как в сечении 0-0. Если входная кромка располагается в области поворота потока (рис. 1.4), то будем считать, что и в этом случае распределение безразмерных скоростей и моментов скорости остается неизменным. Отметим, что это — малообоснованное предположение. Считая, что $(rV_u)_{0c} = (rV_u)_0$ и принимая во внимание поле моментов скорости, получим

$$(rV_u)_{0e} = \overline{(rV_u)}_{0e} (rV_u)_{0e}, \ (rV_u)_{0e} = \overline{(rV_u)}_{0e} (rV_u)_{0e}, \ (rV_u)_{0e} = \overline{(rV_u)}_{0e} (rV_u)_{0e}, \ (1.22)$$

Предполагая также, что момент скорости вдоль линии тока не меняется, меридианные и окружные составляяющие абсолютных скоростей можно рассчитать как

$$\begin{aligned} &V_{1me} = \overline{V}_{0me} Q_{\kappa} / F_{1e} \,, \ V_{1mc} = \overline{V}_{0mc} Q_{\kappa} / F_{1c} \,, \ V_{1ma} = \overline{V}_{0ma} Q_{\kappa} / F_{1a} \\ &V_{1ue} = (rV_u)_{0e} / r_{1e} \,, \ V_{1uc} = (rV_u)_{0c} / r_{1c} \,, \ V_{1ua} = (rV_u)_{0a} / r_{1a} \end{aligned} \right\} . (1.23)$$

1.4. РАСЧЕТ ЦЕНТРОБЕЖНОГО РАБОЧЕГО КОЛЕСА

1.4.1 Кавитация и кавитационная эрозия

По положению входной кромки лопастей рабочие колеса можно разделить на три типа (рис. 1.3). Предполагаем, что поверхности тока

Рис. 1.4. Типы центробежных рабочих колес, коэффициенты проекции силы и входной треугольник скоростей:

Тип 1 —
$$D_{1c}$$
 / $D_{\Gamma} = \sqrt{(1+\overline{d}_1^{\ 2})/2}$; Тип 2 — D_{1c} / $D_{\Gamma} \approx 1,05\sqrt{(1+\overline{d}_1^{\ 2})/2}$; Тип 3 — D_{1c} / $D_{\Gamma} > 0,8$; — — линии тока равноскоростного меридианного потока; — — — нормальные линии

в рабочем колесе представляют собой поверхности вращения. Вдоль нормальной линии, пересекающей линии тока под прямым углом, меридианная скорость считается постоянной. Элементарные решетки на поверхностях тока этого равноскоростного меридианного потока рассчитываются по гидродинамической теории плоских решеток, и из элементарных решеток составляется лопасть, как описано в рабо-Срывной кавитационный запас рабочего рассчитывается ПО схеме суперкавитационного течения входного участка колеса на элементарных решетках поверхностях тока, как изложено в [7]. Кавитационный запас начала кавитации рассчитан, как описано ниже.

Зависимость напора $\,H\,$ и потребляемой мощности $\,N\,$ от кавитационного запаса на входе в насос

$$\Delta h_{\rm BX} = \left(p_{\rm BX} + \rho V_{\rm BX}^2 / 2 - p_{\rm H.II}\right) / \rho g$$
 (1.24)

при постоянных частоте вращения n и подаче Q насоса называется uaстной кавитационной характеристикой насоса. Такая характеристика насоса представлена на рис. 1.4. (Для упрощения записи в обозначениях Δh_i , $\Delta h_{\rm I}$ и т. д. опущен индекс «вх»), а в обозначениях Q, H и т.д. опущен индекс «н». На частной кавитационной характеристике можно отметить несколько критических режимов кавитации. Кавитационные каверны появляются в рабочем колесе при кавитационном запасе Δh_i . Это — режим возникновения кавитации. Наличие каверн не сказывается на напоре и мощности. Первый (I) критический режим соответствует началу изменения напора *или* мощности, второй (II) — началу резкого изменения напора и мощности. При последующем небольшом уменьшении кавитационного запаса каверны достигают выхода из колеса, а затем простираются и за его пределы, что сопровождается резким падением напора и мощности. Режим полностью развитого кавитационного течения с длинными кавернами, замыкающимися за рабочим колеявляется предельным третьим (III) критическим режимом суперкавитации, или режимом кавитационного срыва насоса. Напор, мощность и кавитационный запас на этом режиме достигают своих минимальных значений. Допускаемый кавитационный запас это минимальный кавитационный запас, при котором насос работает без кавитации или с безопасной для него кавитацией. В последнем случае напор, мощность, вибрация, интенсивность кавитационной эрозии и другие показатели работы могут изменяться вследствие кавитации в допускаемых пределах.

1.4.2. Начало кавитации

Можно попытаться обобщить данные для начала кавитации, построив зависимости экспериментального коэффициента кавитации от относительного угла атаки $\overline{\delta} = \delta/\beta_{1\pi}$ или расходного параметра, как в работе [4].

Рис. 1.5. Частная кавитационная характеристика насоса (a) и длина каверны (δ)

$$\lambda_{i_{3}} = \left(2g\Delta h_{i_{3}} - V_{1e}^{2}\right) / W_{1e}^{2} \tag{1.25}$$

$$q_{1e} = \left(\operatorname{tg} \beta_1 / \psi_1 \operatorname{tg} \beta_{1\pi} \right)_e. \tag{1.26}$$

Для расчетов коэффициента кавитации будем пользоваться двумя эмпирическими формулами:

$$\lambda_i = \begin{cases} 0,25 + 5(q_1 - 1)^2, & \text{если } 0,5 < q_1 \le 1; \\ 0,25 + 20(q_1 - 1)^2, & \text{если } 1 < q_1 < 1,3 \end{cases}$$
 (1.27)

Далее рассчитаем соответствующий началу кавитации кавитационный запас на входе в насос

$$\Delta h_{i_{\rm BX}} = (V_{1e}^2 + \lambda_i W_{1e}^2) / 2g + \Delta h_{\rm п.подв}. \tag{1.28}$$

Потери энергии в подводе зависят от вида подвода и рассчитываются по формуле (1.19).

1.4.3. Кавитационный срыв

Коэффициент кавитации для срывного режима рассчитывается по формуле:

$$\lambda_{\text{III}} = \left[\frac{\sin \beta_1 + \sqrt{\sin^2 \delta + a \sin(\beta_1 - \delta)}}{\sin(\beta_1 + \delta) - a} \right]^2 - 1. \tag{1.29}$$

где эффективное стеснение

$$a = K\sigma_1/T. (1.30)$$

Значения K указаны на рис. 1.4.

Срывной кавитационный запас на входе в насос

$$\Delta h_{\text{IIIBX}} = (V_{1c}^2 + \lambda_{\text{III}} W_{1c}^2) / 2g + h_{\text{п.подв}}.$$
 (1.31)

1.4.4. Скорость кавитационной эрозии

Во многих случаях приходится назначать допускаемый кавитационный запас $\Delta h_{\rm доп} < \Delta h_i$. При этом в РК имеются кавитационные каверны некоторой длины (рис. 1.4) и возможна КЭ. Однако, если скорость КЭ мала, то насос может иметь требуемый ресурс работы. Скорость КЭ оценим по эмпирической формуле Gulich [4]. Скорость КЭ рассчитывается по локальной максимальной глубине разрушения. Последняя определяет срок службы РК. Предлагаемая зависимость получена на основе обработки экспериментальных данных для ≈ 100 центробежных насосов и справедлива в широком диапазоне параметров. При обработке данных наблюдался заметный разброс экспериментальных точек. Поэтому погрешность расчетов может достигать 100%. Скорость КЭ лопастей РК в мм/ч:

$$E = c(l_{\kappa}/l_{\kappa,10})^{n} (\sigma_{\text{доп}} - \varphi_{1e}^{2})^{3} U_{1e}^{6} \rho^{3} F_{cor}/8 F_{mat} \sigma_{\text{B}}^{2},$$
 (1.32)

гле

 $c = 8,28 \cdot 10^{-6}$ мм/ч · Па, n = 2,83 — для тыльной стороны лопасти;

 $c = 396 \cdot 10^{-6}$ мм/ч · Па, n = 2,6 — для лицевой стороны лопасти;

 $l_{\rm \scriptscriptstyle K}$ и $l_{\rm \scriptscriptstyle K,10}$ = 10 мм — длина и исходная длина каверны, мм;

 $\sigma_{\rm доп} = 2g\Delta h_{\rm доп} \, / \, U_{1e}^2$ — безразмерный допускаемый кавитационный запас:

 $\phi_{1e} = (V_{m1}/U_1)_e$ — коэффициент расхода;

 $U_{1e} = \omega r_{1e}$ — окружная скорость, м/с;

 F_{cor} , F_{mat} — коэффициенты, учитывающие свойства перекачиваемой жидкости и материала;

 $\sigma_{\rm B}$ — временное сопротивление материала колеса, Па. Для оценки длины каверны можно воспользоваться эмпирической формулой Gulich [4]:

$$\overline{l}_{\kappa} = (l_{\kappa}/T_{1e}) = \begin{cases}
0, & \text{если } \sigma_{\text{доп}} > \sigma_{i}; \\
1 - \left[\left(\sigma_{\text{доп}} - \sigma_{3\%} \right) / \left(\sigma_{i} - \sigma_{3\%} \right) \right]^{0.33}, & \text{если } \sigma_{3\%} \le \sigma_{\text{доп}} \le \sigma_{i}.
\end{cases} (1.33)$$

Здесь шаг лопастей $T_{1e}=2\pi r_{1e}/Z_1$, а безразмерные кавитационные запасы $\sigma=2g\Delta h/U_{1e}^2$. Все кавитационные запасы относятся ко входу в насос. На рис. 1.4 представлена частная кавитационная характеристика совместно с зависимостью относительной длины каверны $(l_{\rm k}/T_{1e})$ от кавитационного запаса. Если $\Delta h_{\rm доп} \geq \Delta h_i$, то кавитация в насосе отсутствует и $l_{\rm k}=0$. При $\Delta h_{\rm доп}<\Delta h_i$ в РК имеется каверна. По мере уменьшения $\Delta h_{\rm доп}$ длина каверны увеличивается. При кавитационном запасе $\Delta h_{3\%}$ каверна достигает горла межлопаточного канала: $l_{\rm k}\approx T_{1e}$. При $\Delta h\to\Delta h_{\rm III}$ длина каверны $l_{\rm k}\to\infty$. Допускаемый кавитационный запас $\Delta h_{\rm доп}$ задан в ТЗ. Поэтому $\sigma_{\rm доп}=2g\Delta h_{\rm доп}/U_{1e}^2$.

Как показывает анализ частных кавитационных характеристик центробежных насосов $n_s \leq 150$, спроектированных с соблюдением общеизвестных требований к густоте решеток, углам атаки и т.д., они крутопадающие. Поэтому можно полагать кавитационный запас при 3% падении напора $\Delta h_{3\%} = 1,1\Delta h_{\rm IIIBx}$, а соответствующий безразмерный кавитационный запас $\sigma_{3\%} = 1,1(2g\Delta h_{\rm IIIBx}/U_{1e}^2)$. Безразмерный кавитационный запас σ_i , при котором в РК начинается кавитация $\sigma_i = 2g\Delta h_{i\rm Bx}/U_{1e}^2$, где $\Delta h_{i\rm Bx}$ рассчитывается по формуле (1.24). Вычислив по (1.28) скорость КЭ, находим максимальную глубину разрушения $h_{\rm max}$ за время работы T, указанное в ТЗ: $h_{\rm max} = TE$. Эту глубину разрушения следует сравнить с толщиной лопасти $\sigma_{\rm K}$ в месте замыкания каверны. Расстояние от входной кромки лопасти до этого места равно длине каверны.

Из представленного на рис. 1.6 ряда центробежных рабочих колес вначале выбираем тип колеса. Входной участок колеса проектируется из условия обеспечения заданной всасывающей способности и

безэрозионной работы. Центробежное рабочее колесо первой ступени рассчитывается на кавитацию по срывному режиму и началу кавитации в такой последовательности.

Назначаем отнесенный к входному патрубку коэффициент запаса по кавитационному срыву

$$\bar{k}_{\text{IIIBX}} = \Delta h_{\text{доп}} / \Delta h_{\text{IIIBX}} > 1. \tag{1.34}$$

Принимая во внимание ГОСТ 6134–2007, в отсутствие специальных требований назначаем:

$$1,2 \le k_{\text{IIIBX}} \le 1,4$$
 (1.35)

Для насосов с высоким ресурсом работы фирма Sulzer [4] рекомендует выбирать отнесенный ко входу в насос коэффициент запаса

$$k_{\text{IIIBX}} \approx k_{3\%} = 1.14 \left(\Delta h_{\text{доп}} / \Delta h_{ref}\right)^{0.12}$$
 (1.36)

По умолчанию $k_{\rm IIIвx}$ рассчитывается по уравнению (1.36). В случае необходимости в соответствующую двойную ячейку можно ввести другой коэффициент запаса. Критический кавитационный запас на входе в насос

$$\Delta h_{\rm III_{\rm BX}} = \Delta h_{\rm \pi O II} / k_{\rm III_{\rm BX}} , \qquad (1.37)$$

а на входе в рабочее колесо он меньше на величину потерь в подводе:

$$\Delta h_{\text{III}} = \Delta h_{\text{IIIBX}} - h_{\text{п.подв}}. \tag{1.38}$$

Поэтому критический кавитационный коэффициент быстроходности рабочего колеса

$$C_{\text{III}} = n_{\text{H}} \sqrt{Q} / (\Delta h_{\text{III}} / 10)^{3/4}$$
 (1.39)

Коэффициент быстроходности насоса

$$n_{s1} = 3,65 n_{\rm H} \sqrt{Q_{\rm H}} / H_{\rm H}^{3/4}$$
 (1.40)

Объемный КПД насоса

$$\eta_{o} = Q/(Q + q_{y}), \tag{1.41}$$

Гидравлический КПД этой ступени оценивается по формуле [1,36]:

$$\eta_{\Gamma} = 1 - 0.42 / \left[\lg \left(1000 D_0 \right) - 0.172 \right]^2.$$
(1.42)

Втулочное отношение $\overline{d}_1=d_1/D_\Gamma$ (рис. 1.2) выбирается в пределах

$$0 < \overline{d}_1 < 0.4$$
 (1.43)

Необходимо, чтобы гайка для крепления рабочего колеса на валу имела достаточно большой диаметр, как показано рис. 1.10.

Назначается относительная толщина входной кромки лопасти

$$0.02 \le \overline{\sigma}_{1c} \le 0.06$$
, (1.44)

соответственно выбранному типу рабочего колеса вычислительной машиной задается коэффициент проекции силы $K=K_c$ и подсчитывается эффективное стеснение

$$a_c = K_c \overline{\sigma}_{1c} \,. \tag{1.45}$$

Предусмотрена возможность ввода коэффициента K_c вручную.

Для известных
$$C_{\rm IIImax}=C_{\rm III}$$
 , \overline{d}_1 и a_c по рис. 1.5 находим $K_0=3,8$. (1.46)

Затем вычисляются геометрические размеры рабочего колеса

$$\begin{split} D_0 &= K_0 D_{Q1}, \\ D_\Gamma &= D_0 \big/ \sqrt{1 - \overline{d}_1^{\,2}} \;, \\ d_1 &= \overline{d}_1 D_\Gamma, \\ D_{1c} &= \begin{cases} D_\Gamma \sqrt{\left(1 + \overline{d}_1^{\,2}\right) \big/ 2} \;, \; \text{если тип 1}; \\ 1,05 D_\Gamma \sqrt{\left(1 + \overline{d}_1^{\,2}\right) \big/ 2} \;, \; \text{если тип 2}, \end{cases} \end{split} \tag{1.47}$$

а также относительный диаметр $\bar{D}_{lc} = D_{lc}/D_{\Gamma}$. Последняя из формул (1.47) — приближенная.

При одинаковых $\overline{\sigma}_{1c}$ и $C_{\rm III}$ увеличение диаметра втулки d_1 со стороны входа в рабочее колесо увеличивает \overline{d}_1 , что требует увеличения K_0 . Поэтому желательно, чтобы диаметр втулки был минимальным.

Согласно работе [3] в отсутствие специальных требований число лопастей промышленных центробежных насосов можно задавать в зависимости от коэффициента быстроходности n_s :

$$n_s$$
 50...60 60...180 180...350 Z_1 9...8 8...6 6 (1.48)

Толщина входной кромки

$$\sigma_{1c} = \pi D_{1c} \overline{\sigma}_{1c} / Z_1 \tag{1.49}$$

рабочих колес, отлитых из сталей 20Л, 20Х13Л, Х18Н12М3ТЛ, должна удовлетворять ограничению [3]:

Рис. 1.6. Зависимость $\,C_{
m IIImax} = f \left(K_0 , \overline{d}_1 , a_c \, \right) \,$ при $\,\delta = \delta_{
m ont} \,$

где все размеры в мм. Соответствующий этим данным график нормальных толщин лопасти приведен на рис. 1.6.

Для РК типов 2 и 3 площадь F_1 и $\overline{F_1} = F_1/F_0$ определяется первоначально приближенно по диаметру b_1 вписанной окружности с центром O на входной кромке (рис. 1.8a):

$$F_1 = \pi D_{1O} b_1 \,. \tag{1.50a}$$

В зависимости от выбранного типа рабочего колеса задается степень диффузорности его входного участка. Для РК типа 1

$$\overline{F}_1 = 1. \tag{1.51}$$

Далее степень диффузорности \overline{F}_1 уточняется при профилировании лопастей.

Далее вычисляются приближенная окружная составляющая абсолютной скорости, площадь входа на лопасти, коэффициент режима и угол относительного потока:

$$V_{1uc} = 2(rV_u)_1/D_{1c},$$

$$U_{1c} = \omega D_{1c}/2,$$

$$F_{1c} = \overline{F}_1 \pi D_0^2/4,$$

$$m_c = (U_{1c} - V_{1uc})/(Q/\eta_{o1}F_{1c}),$$

$$\beta_{1c} = \operatorname{arctg}(1/m_c).$$
(1.52)

Согласно уравнению (1.19) работы [8], оптимальный по λ_{\min} угол атаки

$$\delta_{\text{ourr},c} = \arcsin \sqrt{a_c/\sin \beta_{1c}} \ . \tag{1.53}$$

Угол атаки δ_c и угол установки лопасти β_{1nc} целесообразно выбирать меньше оптимальных

Рис. 1. 7. График нормальных толщин лопасти рабочего колеса (θ = 125° , $\mu_{AE} = 40^{\circ}$)

$$\delta_{c} = (0,3...0,7)\delta_{\text{ont.}c} = 5...7^{\circ},$$

$$\beta_{1,nc} = \beta_{1c} + \delta_{c}.$$
(1.54)

Для уменьшения средней относительной скорости и потерь энергии при входе в колесо, а также диффузорности межлопаточного канала рекомендуется, чтобы $\beta_{1лc} \ge 15^{\circ}$, (1.55) а коэффициент стеснения

$$\psi_{1c} = 1 - \overline{\sigma}_{1c} / \sin \left[\arctan \left(\operatorname{tg} \beta_{1\pi c} \sin \lambda_c \right) \right] \ge 0.8.$$
 (1.56)

Причем, в этой формуле принят предварительно $\lambda_c=60^\circ$. Если толщина входной кромки σ_{1c} и коэффициент стеснения ψ_{1c} не удовлетворяют ограничениям (1.50) и (1.56), то нужно уменьшить \overline{d}_1 , Z_1 и увеличить $\overline{\sigma}_{1c}$. Наиболее эффективный способ увеличения σ_{1c} и ψ_{1c} —применение двухрядной решетки лопастей с малым числом лопастей на входном участке. Если подкрутить поток на входе в колесо с помощью полуспирального подвода, то можно увеличить β_1 и соответственно $\beta_{1\pi}$.

Затем рассчитываются размеры меридианной проекции рабочего колеса (рис. 1.8δ). Форма меридианного сечения центробежного колеса определяется диаметрами втулки d_1 и горловины D_Γ , радиусом дуги окружности ρ_e , относительной площадью \overline{F}_{Π} на повороте потока из осевого направления в радиальное, углом ξ наклона линии MN центров O_e и O_a окружностей, наружным радиусом R_{2c} и шириной b_2 колеса, углом наклона диска ε_a и соответствующими отрезками прямых. Для уменьшения относительных скоростей и потерь энергии на повороте потока вдоль линии тока e (рис. 1.8) рекомендуется выбирать относительный радиус по ведомому (покрывному) диску

$$0,6 \le \overline{\rho}_e = \rho_e / D_Q \le 1,3. \tag{1.57}$$

В среднем $\overline{\rho}_e \approx 1$. Меньшие значения следует выбирать для рабочих колес с малыми длинами l_z и относительными площадями $\overline{F_n}$. Радиус

$$\rho_e = \overline{\rho}_e D_O \,, \tag{1.58a}$$

а радиус по ведущему (покрывному) диску обычно назначается $\rho_a > \rho_e$. (1.586)

Рис. 1.8. Площадь входа на лопасти (а) и меридианная проекция рабочего колеса (б)

Кроме того, следует принять во внимание замечания о волнистости поверхности лопасти [14, с. 25]. Относительная площадь $\overline{F}_{_{\Pi}}=F_{_{\Pi}}/F_{0}$ меридианного потока в этом месте выбирается

$$1,2 \le \overline{F}_{\Pi} \le 1,4$$
 (1.59)

Площадь на повороте потока из осевого направления в радиальное:

$$F_{\Pi} = \pi \overline{F}_{\Pi} D_0^2 / 4. \tag{1.60}$$

Линию MN центров окружностей располагаем под углом $\xi = 45 \pm 15^{\circ}$. (1.61)

Увеличение этого угла смещает максимум F_{Π} навстречу потоку. Из рис. 1.7 следует, что $\left(\rho_e + D_{\Gamma}/2 - R_{\Pi\Pi}\right)/\sin\xi - \rho_e = l_{n\Pi}/2$, где радиус центра тяжести $R_{\Pi\Pi}$, расположенный на середине нормали EA, связан с площадью F_{Π} на повороте потока соотношением $R_{\Pi\Pi} = F_{\Pi}/2\pi l_{n\Pi}$. После подстановки $R_{\Pi\Pi}$ в предыдущее уравнение и небольших преобразований получим квадратное уравнение для длины нормали на повороте. Его решение:

ОЦН(v12)

$$l_{n\pi} = S - \sqrt{S^2 - F_{\pi}/\pi \sin \xi},$$

$$S = \left[(1 - \sin \xi) \rho_e + D_{\Gamma}/2 \right] / \sin \xi.$$
(1.62)

где

На основании первой формулы (1.54) площадь $F_{\rm n} \leq \pi S^2 \sin \xi$. Поэтому относительная площадь на повороте потока (1.58) не может превышать максимально допускаемую

$$\overline{F}_{\text{m max}} = F_{\text{m max}} / F_0 = (4S^2 \sin \xi) / D_0^2 ,$$
 (1.63)

где S определяется по второй формуле (1.57). Значение $F_{\text{п max}}$ рассчитывается ПЭВМ и отображается на экране.

Далее определяется скорость КЭ лопастей рабочего колеса и максимальная глубина разрушений.

Выходной участок рабочего колеса рассчитывается из условия обеспечения заданного напора при условии выполнения всех *функциональных* и *критериальных* ограничений.

Коэффициент прозрачности k , относительный активный радиус y и коэффициент нулевого направления i

$$y = (r_a/R_2)^2$$
,
 $i = 1/b_2 \psi_2 \operatorname{tg} \beta_{2\pi}$ (1.64)

находим по теории плоских гидродинамических решеток [9] в соответствии с рис. 1.9 и 1.10. Теоретический напор решетки на поверхности тока

$$H_{\rm T} = \frac{\omega}{g} (1 - k) \left(y R_2^2 \omega - \frac{R_2 V_{2m}}{\Psi_2 \operatorname{tg} \beta_{2\pi}} - (r V_u)_1 \right), \tag{1.65}$$

а ее наружный радиус

$$R_{2} = \frac{V_{2m}}{2\omega y \psi_{2} \lg \beta_{2\pi}} + \frac{1}{\omega} \sqrt{\frac{1}{y} \left(\frac{gH_{T}}{1-k} + \omega (rV_{u})_{1} \right) + \left(\frac{V_{2m}}{2y \psi_{2} \lg \beta_{2\pi}} \right)^{2}} . \quad (1.66)$$

Очень часто при выбранных $\overline{\rho_e}$, ξ , $\overline{F_n}$, ϵ_a , b_2 угол наклона покрывного диска ϵ_e принимает неприемлемые значения: слишком большой или отрицательный. Обычно в насосах общепромышленного назначения

$$\varepsilon_a \le 10^{\circ}$$
 (1.67)

Поэтому рекомендуется начертить, например, с помощью программы Компас, меридианную проекцию с приемлемым углом ε_e и опреде-

лить по чертежу ξ , $l_{n\pi}$, $R_{\text{цп}}$, площадь $F_{\pi}=2\pi R_{\text{цп}}\,l_{n\pi}$ и относительную площадь $\overline{F_{\pi}}=F_{\pi}\Big/\Big[\pi\Big(D_{\text{r}}^2-d_1^2\Big)\Big/4\Big]$. Затем ввести эти окончательные значения в программу.

Угол $\beta_{2\pi}$ установки лопасти на выходе из рабочего колеса выбирается на основании следующих соображений [7]. При увеличении этого угла увеличивается диффузорность межлопаточного канала, уменьшается коэффициент реактивности, уменьшается наружный диаметр рабочего колеса, т.е. его радиальный габарит, изменяется форма напорной и мощностной характеристик. Для проектируемого насоса

$$\beta_{2\pi} = 22^{\circ}$$
. (1.68)

Гидравлические потери энергии в рабочем колесе зависят от *сте*пени диффузорности относительного потока

$$\overline{W}_2 = W_2 / W_1 = F_1 \psi_1 \sin \beta_{1\pi} / F_2 \psi_2 \sin \beta_{2\pi} , \qquad (1.69)$$

или относительной площади на выходе

$$\bar{F}_2 = F_2 / F_0 \,. \tag{1.70}$$

Для уменьшения гидравлических потерь энергии в рабочем колесе рекомендуется:

$$0,7 \le \overline{W}_2 \le 1, \ 1 \le \overline{F}_2 \le 2.$$
 (1.71)

Коэффициентом реактивности рабочего колеса называется относительное приращение потенциального напора H_{nor} в колесе:

$$\rho = H_{\text{not}} / H_{\text{T}} = 1 - gH_{\text{T}} / 2U_{2c}^2 . \tag{1.72}$$

В соответствии с [4] нормативные коэффициенты реактивности рабочих колес следующие:

Таблица 1.2 Нормативные коэффициенты реактивности

n_s	40	60	80	100	120	140	160	200	300
ρ	0,626	0,673	0,703	0,724	0,741	0,754	0,764	0,781	0,809

Уменьшение коэффициента реактивности по сравнению с приведенными выше увеличивает динамический напор, который необходимо преобразовать в потенциальный в отводе ступени. Это уменьшает КПД ступени.

Радиальный габарит рабочего колеса можно характеризовать *коэффициентом напора*

$$\bar{H} = gH/U_2^2 \,. \tag{1.73}$$

Рис. 1.9. Зависимость $k=f\left[\beta_{,n},\left(R_{1}/R_{2}\right)^{z/2}\right]$ для круговой решетки из отрезков логарифмических спиралей [10]

Рис. 1.10. Относительный активный радиус круговой решетки [10]

На толщину выходной кромки σ_2 накладывается *ограничение* (1.50) и обычно *коэффициент стеснения*

$$\psi_2 = 1 - Z\sigma_2 / 2\pi R_2 \sin\left[\arctan\left(tg\beta_{2\pi}\sin\lambda_2\right)\right] \ge 0.9, \tag{1.74}$$

где $Z=Z_1+Z_2$ и принято: $2R_2=D_{2\text{ont}}$, угол между меридианным сечением средней поверхности лопасти и линией тока $\lambda_2=90^\circ$.

После расчета меридианной скорости на выходе из рабочего колеса

$$V_{2m} = (Q_1 + q_y)/2\pi R_2 b_2 \tag{1.75}$$

и теоретического напора $H_{\rm T} = H/\eta_{\rm F}$ согласно уравнению (1.66) вычисляются наружные радиусы рабочего колеса по трем линиям тока.

1.5. РАСЧЕТ ОТВОДА

1.5.1. Расчет спирального отвода.

Спиральный отвод насоса по рис. рассчитывается по осредненным параметрам потока (рис. 1.11). Предполагаем, что в любом радиальном сечении потока за рабочим колесом момент скорости постоянный

$$rV_u = const = (rV_u)_2, (1.76)$$

и меридианные скорости на начальной окружности радиуса R_3 также постоянные. Так как расход жидкости через цилиндрическую поверхность AB равен расходу через трапецеидальное сечение BC, то уравнение линии тока в полярных координатах:

$$\frac{cQ_{\rm H}\phi}{2\pi} = \int_{R_3}^{R_3+h} V_u b dr = (rV_u)_2 \int_{R_3}^{R_3+h} \frac{b}{r} dr, \qquad (1.77)$$

где согласно [3] поправочный коэффициент c обычно выбирается равным

$$c = \begin{cases} 0,616n_s^{0,097}, \text{ если } n_s \le 150; \\ 1, & \text{ если } n_s > 150. \end{cases}$$
 (1.78)

Вдоль линии тока располагаем наружную стенку отвода. В случае спирального канала с трапецеидальной формой поперечного сечения, как показано на рис. 1.12a

$$b = b_3 + 2(r - R_3) \operatorname{tg} \alpha$$
 (1.79)

Подставляя (1.79) в (1.77) и интегрируя, получим связь между безразмерной высотой сечения и углом его расположения в градусах:

Рис. 1.11. Спиральный отвод:

1 — спиральный канал; 2 — диффузор

Рис. 1.12. Спиральный канал с трапецеидальным (a) и грушевидным (δ) сечениями

$$\varphi^{\circ} = 360 \left[2\overline{h} - \left(2 - \overline{b}_{3} \right) \ln \left(1 + \overline{h} \right) \right] / \overline{Q} , \qquad (1.80)$$

где

$$\overline{h} = h/R_3$$
, $\overline{b}_3 = b_3/R_3 \operatorname{tg}\alpha$, $\overline{Q} = cQ_{\rm H}/(rV_{\scriptscriptstyle H})_2 R_3 \operatorname{tg}\alpha$.

Подбираем такие значения h, чтобы получить $\phi = 45^\circ, 90^\circ, 135^\circ$ и т.д. Затем трапецеидальным сечениям придается гидродинамически и технологически благоприятная грушевидная форма, как показано на рис. 1.12δ . При этом к трапецеидальным сечениям добавляются площади F_v и вычитаются F_x так, чтобы

$$F_x/F_y = r_x/r_y ,$$

где r_x , r_v — центры тяжести заштрихованных сечений.

Рис. 1.12а. Спиральный канал круглого сечения

Как следует из рис. 1.12а, для спирального канала круглого поперечного сечения $(b/2)^2 + (r-a)^2 = \rho^2$. Поэтому

$$b = 2\sqrt{\rho^2 - (r - a)^2}$$
 (1.81)

Следовательно
$$\int\limits_{R_3}^{R_3+h} \frac{b}{r} dr = 2 \int\limits_{a-\rho}^{a+\rho} \sqrt{\rho^2 - \left(r-a\right)^2} \, \frac{dr}{r} = 2\pi \left(a - \sqrt{a^2 - \rho^2}\right).$$
 Так

как
$$a=R_3+\rho$$
 , то
$$\int\limits_{R_3}^{R_3+h} \frac{b}{r} dr = 2 \int\limits_{a-\rho}^{a+\rho} \sqrt{\rho^2-(r-a)^2} \frac{dr}{r} = 2\pi \Big(R_3+\rho-\sqrt{R_3^2+2R_3\rho}\Big)$$
 и согласно (1.77)
$$\frac{cQ_{\rm H}\phi}{2\pi \big(rV_u\big)_2} = 2\pi \Big(R_3+\rho-\sqrt{R_3^2+2R_3\rho}\Big).$$
 Переходя от

и согласно (1.77)
$$\frac{cQ_{\rm H}\phi}{2\pi (rV_u)_2} = 2\pi \Big(R_3 + \rho - \sqrt{R_3^2 + 2R_3\rho}\Big)$$
. Переходя от

радианной меры измерения угла к градусной и обозначая

$$cQ_{\rm H}/720\pi (rV_u)_2 = J$$
, (1.82)

найдем $J\phi^{\circ} = R_3 + \rho - \sqrt{R_3^2 + 2R_3\rho}$. Принимая во внимание, $h = 2\rho$, после некоторых преобразований получим текущую высоту сечения спирального канала:

$$h = 2\left(J\phi^{\circ} + \sqrt{2R_3J\phi^{\circ}}\right),\tag{1.82a}$$

где угол ϕ° подставляется в градусах. При $\phi = \phi_{p}$ получим высоту расчетного сечения

$$h_{\rm p} = 2\left(J\phi^{\circ}_{\rm p} + \sqrt{2R_3J\phi^{\circ}_{\rm p}}\right),\tag{1.826}$$

Высоты по (1.82*a*) представлены на листе «Геометрические размеры».

1.5.2. Расчет комбинированного отвода.

Такой отвод показан на рис. 1.3. Поток жидкости из рабочего колеса поступает в диффузорные каналы (лопаточный направляющий аппарат), в спиральный канал и далее в напорный патрубок. Вместо лопаточного направляющего аппарата может быть безлопаточный диффузор. Вместо спирального канала переменного сечения может быть кольцевой канал постоянного сечения или любое другое устройство для сбора жидкости. Напорный патрубок может представлять собой диффузор, конфузор или канал постоянного сечения.

В отводе преобразуется в энергию давления кинетическая энергия $\Delta = \left(V_2^2 - V_{\text{вых}}^2\right) \! / 2g = \! \left(V_2^2 - V_4^2\right) \! / 2g + \! \left(V_4^2 - V_{\text{вых}}^2\right) \! / 2g, \; \text{где все скорости средние, а коэффициенты кинетической энергии считаются равными единице. Разделив это уравнение на кинетическую энергию <math>\Delta$, получим в относительных величинах: $1 = \overline{\Delta}_{2-4} + \overline{\Delta}_{4-\text{вых}}$, где доля

$$\overline{\Delta}_{2-4} = (V_2^2 - V_4^2) / (V_2^2 - V_{\text{вых}}^2)$$
, а доля $\overline{\Delta}_{4-\text{вых}} = (V_4^2 - V_{\text{вых}}^2) / (V_2^2 - V_{\text{вых}}^2)$.

Так как на участке 4 — вых это преобразование сопровождается большими потерями энергии, то большая доля кинетической энергии должна преобразовываться в энергию давления на участке 2 — 4. Можно рекомендовать

$$\overline{\Delta}_{2-4} = 0.8...0.9$$
 (1.82*e*)

Далее найдем геометрические размеры аппарата. Так как $V_4^2=V_{\text{вых}}^2+\left(V_2^2-V_{\text{вых}}^2\right)\overline{\Delta}_{4-0}=V_{\text{вых}}^2+\left(V_2^2-V_{\text{вых}}^2\right)\left(1-\overline{\Delta}_{2-4}\right),$ то площадь на выходе из направляющего аппарата

$$F_4 = Q_1 / Z_{\text{no}} \sqrt{\left(V_{2mc}^2 + V_{2uc}^2\right) \left[1 - \left(1 - \frac{V_{\text{Bblx}}^2}{V_{2mc}^2 + V_{2uc}^2}\right) \overline{\Delta}_{2-4}\right]}, (1.82\varepsilon)$$

Причем $V_{\text{вых}} = 4Q_{\text{H}}/\pi D_{\text{вых}}^2$.

1.6. ЭСКИЗНОЕ ПРОЕКТИРОВАНИЕ НАСОСА

При эскизном проектировании выбираются размеры уплотнений РК, устройства уравновешивания осевых и радиальных сил на роторе насоса, опоры ротора, системы смазки опор, проектируются уплотнения вала, рассчитываются прогибы и критические частоты вращения ротора, рассчитывается корпус насоса, крышка и др. Эскизный проект представлен на рис. 1.13.

Рис 1.13. Эскизный проект одноступенчатого центробежного насоса ОЦН 180-68:

1 — пробка сливная; 2 — кольцо уплотнения; 3 – гайка; 4 – ребро; 5 – входной патрубок; 6 – шпонка; 7 – рабочее колесо; 8 – выходной патрубок; 9 – корпус спирального отвода; 10 – промежуточный диск; 11 – фонарь; 12 – крышка подшипника; 13 – шарикоподшилник; 14 – пробка; 15 – стойка; 16 - ножка; 17 – указатель уровня масла; 18 – уровень масла; 19 – пробка слива масла; 20 - вал; 21 — уплотнение вала; 22 — слив утечки; 23 — опора корпуса;

1.7. ПОТЕРИ ЭНЕРГИИ И КПД НАСОСА

1.7.1. Расчет уплотнений рабочего колеса

Для предотвращения утечки жидкости из области высокого давления на выходе из рабочего колеса в область низкого давления на входе в колесо оно снабжается щелевыми уплотнениями (рис. 1.10).

Рис. 1.14. Однощелевое уплотнение рабочего колеса:

1 — кольцо на диске рабочего колеса; 2 — кольцо корпуса

В соответствии с [3] расход утечки через однощелевое уплотнение рабочего колеса

$$q_{y} = \mu \pi D_{y} \delta_{y} \sqrt{2gH_{y}}. \tag{1.83}$$

Коэффициент расхода уплотнения

$$\mu = \left[\frac{\lambda_y l_y}{2\delta_y} + 1,3\right]^{-1/2}.$$
(1.84)

а перепад напоров на уплотнении в соответствии с [3]

$$H_{y} = H_{T} - \frac{V_{2uc}^{2}}{2g} - \frac{U_{2c}^{2}}{8g} \left[1 - \left(\frac{D_{y}}{2R_{2c}} \right)^{4} \right], \tag{1.85}$$

где

$$V_{2uc} = (gH_{\rm T} - \omega(rV_u)_1)/U_{2c}, \ U_{2c} = \omega R_{2c}.$$
 (1.86)

Коэффициент трения любой из щелей вычисляется по формулам Пуазейля и Прандтля-Никурадзе

$$\lambda = \begin{cases} 64/\text{Re, если } \text{Re} \le 2300; \\ \left[2\lg\left(\delta_{y}/\Delta_{y}\right) + 1.74 \right]^{-2}, \text{ если } \text{Re} > 2300. \end{cases}$$
 (1.87)

В этой формуле Δ_y — эквивалентная шероховатость поверхности щели. Осевая и окружная составляющие абсолютной скорости в щели уплотнения и число Рейнольдса:

$$V_z = q_y / \pi D_y \delta_y, \quad V_u = \omega D_y / 4, \quad \text{Re} = 2\delta_y \sqrt{V_z^2 + V_u^2} / \nu.$$
 (1.88)

С учетом вращения кольца уплотнения коэффициент трения щели

$$\lambda_{y} = \lambda \sqrt{1 + \left[\left(V_{u} / V_{z} \right) / \left(1 + 1, 3\sqrt{\lambda} \right) \right]^{2}}. \tag{1.89}$$

Если рабочее колесо имеет одно уплотнение на ведомом диске, то в программу следует ввести радиальный зазор в уплотнении на ведущем диске $\delta_{\rm yl}=0,0001\,{\rm mm}$. При этом уплотнении будет «закрыто» и расход через него $q_{\rm v}=0$.

1.7.2. Расчет дискового трения

Мощность трения дисков рассчитывается по эмпирическим формулам Седач и Неспела для коэффициентов трения дисков, приведенным в [4]. Расчет учитывает направление токов жидкости в боковых полостях, окружные составляющие скорости жидкости на вышеупомянутых границах принимается равным нулю, а диски — гидравлически гладкими. Мощность трения колец уплотнений рабочего колеса рассчитаем согласно [1]. Мощности дискового трения рассчитываются для левого и правого диска порознь, а затем складываются.

Число Рейнольдса

$$Re = \omega R_{2c}^2 / v \tag{1.90}$$

и коэффициент трения

$$C_{f_0} = \begin{cases} 0,667/\sqrt{\text{Re}}, \text{ если } 2 \cdot 10^4 < \text{Re} < 10^5; \\ 0,0185/\sqrt[5]{\text{Re}}, \text{ если } \text{Re} \ge 10^5. \end{cases}$$
 (1.91)

Влияние тока жидкости в пазухе на дисковое трение учитываем по эмпирическим формулам. Сумма мощностей трения диска и его наружной цилиндрической поверхности

$$N_{\text{\tiny T,I,I}} = (C_{f0} + \Delta C_f) \rho \omega^3 R_2^5 (1 + 5l_{\text{\tiny II}}/R_2), \tag{1.92}$$

где $l_{\rm ц}$ — длина наружной цилиндрической поверхности, а ΔC_f — поправка на влияние тока жидкости. В эту формулу подставляются соответствующие величины и рассчитываются мощности трения левого $N_{{
m T},{
m T},{
m R}}$ и правого $N_{{
m T},{
m T},{
m R}}$ дисков.

В соответствии с [1] коэффициент момента трения одного кольца уплотнения рабочего колеса

$$C_{fy} = \frac{\pi}{16} \frac{\lambda}{(1+1,3\sqrt{\lambda})^2} \sqrt{1 + \left[\frac{(1+1,3\sqrt{\lambda})q_y}{\pi (D_y/2)^2 \delta_y \omega} \right]^2} . \tag{1.93}$$

Коэффициент трения λ вычисляется по формуле (1.60). Мощность трения

$$N_{\rm T,v} = C_{\rm fv} \rho \omega^3 (D_{\rm vl}/2)^4 \Sigma l_{\rm v}, \tag{1.94}$$

где суммарная длина щелей уплотнения рабочего колеса

$$\sum l_{y} = l_{y_1} + l_{y_2} + l_{y_3}. \tag{1.95}$$

Мощность дискового трения насоса

$$\sum N_{\text{T.A}} = N_{\text{T.A}e} + N_{\text{T.A}a} + 2N_{\text{T.Y}}. \tag{1.96}$$

Относительная мощность дискового трения

$$\sum \overline{N}_{\text{T.A}} = \left(\sum N_{\text{T.A}}\right) / N_{\text{H}} \tag{1.97}$$

входит в уравнение (1.5) для механического КПД насоса и позволяет судить о влиянии дискового трения на механический КПД насоса.

1.7.3. Расчет мощности трения в подшипниках и уплотнениях вала

Проектируемый насос может иметь гидродинамические или шариковые подшипники. Потери на трение в подшипниках и торцовом уплотнении вала приняты равными 2% от потребляемой насосом мощности.

1.7.4. Коэффициенты полезного действия насоса

Механический, объемный и гидравлический КПД насоса рассчитываются по уравнениям п. 1.2.

1.8. ПРОФИЛИРОВАНИЕ ЛОПАСТЕЙ ЦЕНТРОБЕЖНЫХ РАБОЧИХ КОЛЕС

Профилирование выполняется на ПЭВМ в интерактивном режиме по программе «Профилирование лопасти» [14]. Лопасти рабочего колеса профилируются на осесимметричных поверхностях тока равноскоростного меридианного потока с применением конформных отображений. Результаты профилирования представлены на рис. 1.15.

Рис. 1. 15. Профилирование лопастей рабочего колеса насоса ОЦН 180-68

1.9. ЭНЕРГЕТИЧЕСКАЯ И КАВИТАЦИОННЫЕ ХАРАКТЕРИСТИКИ

Представление об энергетической характеристике спроектированного насоса дают графики табл. 1.1, п. 9. Для их построения использованы типичные зависимости безразмерных напора $\bar{H} = H/H_{\rm p}$ и КПД $\bar{\eta} = \eta/\eta_{\rm p}$ от безразмерной подачи $\bar{Q} = Q/Q_{\rm p}$ центробежных насосов с коэффициентами быстроходности $n_{\rm s} = 64...402$ из монографии [12].

Кроме того, на вышеупомянутом рисунке представлена частная кавитационная характеристика насоса.

1.10. ОЦЕНКА КРИТЕРИЕВ КАЧЕСТВА

Спроектированный насос оценивается следующими критериями качества: кавитационным коэффициентом быстроходности

$$C_{\text{IIIBX}} = n_{\text{H}} \sqrt{Q_{\text{H}}} / (\Delta h_{\text{IIIBX}} / 10)^{3/4},$$
 (1.98)

коэффициентом запаса $k_{\rm IIIBX}$ по кавитационному срыву, параметрами кавитационной эрозии $W_1/W_{\rm 1\pi}$ и $h_{\rm max}$, относительной критической подачей $Q_{\rm H.Kp}/Q_{\rm H}$, при которой на входе в рабочее колесо возникают обратные токи, коэффициентом полезного действия, а также коэффициентом напора. Эти критерии сравниваются по каталогам, проспектам и др. с достигнутыми показателями для лучших насосов того же типа.

На рис. 1.16 представлены зависимости наивысшего максимального КПД насосов от коэффициента быстроходности и приведенного входного диаметра, полученные на основе статистического анализа характеристик насосов ведущих зарубежных и отечественных фирм [7]. Д.т.н. Шапиро А.С. проанализировал КПД на расчетном режиме 132 высокооборотных одноступенчатых центробежных и шнекоцентробежных насосов с $n_s = 16...290$ одностороннего всасывания со спиральным отводом. Максимально возможный КПД насоса выражен следующей эмпирической формулой:

$$\eta_{\text{IIIAII}} = 1 - \exp\left[-28,6(Q/n)^{1/5}\right] / \left[14/(n_s - 3) + 0,91 + 0,00054(n_s - 3)\right],$$
 (1.99) где Q — расчетная подача насоса, м³/с; n — частота вращения, об/мин. Эта зависимость представлена на рис. 1.17.

Рис. 1.16. Наивысший уровень КПД консольных насосов (a) и насосов типа "Inline" (b) с закрытым рабочим колесом при $K_0=4,5$. На кривых указаны диапазоны D_0 в мм. Данные [7].

Рис. 1.17. Максимально возможный КПД насоса по данным Шапиро А.С.

Коэффициент напора насоса

$$\bar{H} = gH/U_{2e}^2$$
, (1.100)

характеризующий радиальный габарит спроектированного рабочего колеса, следует сравнить с коэффициентом напора по данным разных источников.

Коэффициент напора промышленного насоса, у которого наружный диаметр рабочего колеса рассчитан по статистической формуле ВИГМ [3], составляет

$$\bar{H}_{\text{ВИГМ}} = 0.495/(n_s/100)^{0.33}$$
. (1.101)

Он уменьшается с ростом коэффициента быстроходности.

Средний коэффициент напора насосов из базы данных Еигоритр можно рассчитать по формуле

$$\bar{H}_{\text{EURO}} = 0,622 - 0,1(n_s/100).$$
 (1.102)

2. ЧЕРТЕЖИ ПРОТОЧНОЙ ПОЛОСТИ НАСОСА

В расчетно-пояснительную записку включаются «теоретические» чертежи следующих элементов проточной полости: подвода, рабочего колеса и отвода. Первый и третий чертежи в пособии не приводится. Теоретический чертеж рабочего колеса представлен на рис. 2.1. Размеры этого рабочего колеса существенно отличаются от рассчитанного. Чертеж представлен только как пример задания формы лопасти и в дальнейшем будет заменен.

Средняя поверхность												
Линия тока О	 			 						_		
Ft, градус	0	10	20	100	110	111	112	114	116	118	120	122
f, MM	192	179	166,8	109,1	106,9	106,7	106,5	106,2	106	105,7	105,5	105,3
Z, MM	26	27,13	28,18	44,55	49,11	49,58	50,06	51,01	51,98	52,95	53,92	54,9
SIG, MM	5,5	6	6,4	5	4,1	4	4	4	4	4	4	4
Линия тока 2		-										
FI, градус	0	10	20	100	110	111	112	114	116	118	120	122
r, mm	192	178,9	166,8	86,38	78,01	77,25	76,5	75,03	73,63	72,29	71,01	69,79
z, MM	. 0	0	0	1,17	4,27	4,66	5,08	5,94	6,84	7,79	8,76	9,78
SIG, MM	5,5	6	6,4	5,6	5,2	5,15	5,1	5	4,9	4,8	4,7	4,6
Лицевая сторона												
Линия тока С	-			 -		-						
FI, градус	0	10	20	100	110	111	112	114	116	118	120	122
r, MM	192	182,2	170,3	110,8	107,9	107,7	107,5	107,1	106,8	106,4	106,2	105,9
2, MM	.26	26,85	27,88	42,13	46,77	47,26	47,7	48,59	49,48	50,38	51,28	52,19
SIG, MM	5,5	6	6,4	 - 5	4,1	4	4	.4	4	4	4	4
Линия тока 2												
FI, градус	0	10	20	 100	110	111	112	114	116	118	120	122
r, mm	. 192	182,2	170,2	 89,65	80,83	80,03	79,21	77,63	76,11	74,66	73,27	71,92
2, MM	0	0	0	0,51	2,99	3,33	3,69	4,47	5,3	6,17	7,09	8,06
SIG, MM	5,5	6	6,4	5,6	5,2	5,15	5,1	5	4,9	4,8	4,7	4,6

Рис. 2.1. Фрагмент цилиндрических координат (FI, r, z) и нормальных толщин лопасти SIG рабочего колеса насоса ОЦН 180-68

Рис. 2.1. Окончание

ПРИЛОЖЕНИЕ

П.1. КОЭФФИЦИЕНТЫ ВЫХОДНОГО ДИАМЕТРА КОНСОЛЬНЫХ НАСОСОВ

На рис. П.1 представлена зависимость коэффициенты выходного диаметра от коэффициента быстроходности консольных насосов. Эти насосы имели прямоосные или кривоосные диффузоры. Данные по прямоосным диффузорам взяты из каталога консольных насосов [], а по кривоосным — из работы [].

Рис. П.1. Зависимость коэффициентов выходного диаметра от коэффициента быстроходности:

• — прямоосный диффузор; о — кривоосный диффузор

Рис. П.2. Зависимость коэффициентов длины выходного патрубка консольных насосов с прямоосными диффузорами от коэффициента быстроходности

СПИСОК ЛИТЕРАТУРЫ

- 1. Байбиков А.С., Караханьян В.К. Гидродинамика вспомогательных трактов лопастных машин. М.: Машиностроение, 1982. 112 с.
- 2. *Байбаков О.В., Руднев С.С.* Расчет рабочего колеса и подвода лопастного насоса: Учебное пособие по курсовому и дипломному проектированию / Под ред. И.В. Матвеева. М.: Изд-во МВТУ, 1983. 46 с.
- 3. *Гидравлика*, гидромашины и гидроприводы / Под ред. Т.М. Башты и С.С. Руднева. 2-е изд., испр. и доп. М.: Машиностроение, 1982. 424 с.
- 4. *Кузнецов А.В.*, *Панаиотти С.С.*, *Савельев А.И*. Автоматизированное проектирование многоступенчатого центробежного насоса: Учебное пособие: М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 124 с.
- 5. *Ломакин А.А.* Центробежные и осевые насосы. М. Л.: Машиностроение, 1966. 364 с.
- 6. Луговая С.О., Кочевский А.Н., Щеляев А.Е. Тестирование пакета СFX: Расчет течения воздуха в полуспиральном подводе насоса двухстороннего входа. // Международная НТК М43 «Есоритр.ru 2006. Насосы. Эффективностьи экология»: Тезисы докладов. М.: МГТУ им. Н.Э. Баумана, 2006. С. 30–31.
- 7. Лунаци Э.Д. О наивысшем уровне КПД и кавитационных качеств общепромышленных центробежных насосов основных конструктивных типов // Гидромашиностроение. Настоящее и будущее: Тез. докл. международной науч.-техн. конф., октябрь 2004 г. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. С. 43.
- 8. *Панаиотти С.С.* Основы расчета и автоматизированное проектирование лопастных насосов с высокой всасывающей способностью. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. 48 с.
- 9. *Пфлейдерер К.* Лопаточные машины для жидкостей и газов. М.: Машгиз, 1960. 682 с.
- $10. \, \textit{Руднев C.C.}$ Основы теории лопастных решеток. М.: Ротапринт МВТУ, 1976. 78 с.
- 11. Руднев A.C. Создание центробежных консольных насосов нового поколения и исследование их работы в расширенном диапазоне подач: Дис. ... канд. техн. наук. M., 1990. 210 с.
- 12. Руднев С.С., Матвеев И.В. Методическое пособие по курсовому проектированию лопастных насосов. М.: Ротапринт МВТУ, 1974. 72 с.

ОЦН(v12)

- 13. *Степанов А.И.* Центробежные и осевые насосы. М.: Машгиз, 1960. 464 с.
- 14. Сточек Н.П., Шапиро А.С. Гидравлика жидкостных ракетных двигателей.— М.: Машиностроение, 1978.— 128 с.
- 15. *Тимофеев Д.В.*, *Савельев А.И.*, *Панаиотти С.С.* Автоматизированное профилирование лопастей центробежных рабочих колес: Пособие по проектированию Калуга, 2007. 66 с.
 - 16. www.mgtu-ssp.narod.ru

СОДЕРЖАНИЕ

Условные обозначения	3
Индексы	4
Сокращения	4
1. Расчёт проточной полости насоса	
1.1. Техническое задание	
1.2. КПД, потребляемая мощность и диаметр вала	5
1.2.1. Механические потери	11
1.2.2. Объёмные потери	11
1.2.3. Гидравлические потери	12
1.3. Расчёт подвода	12
1.4. Расчёт центробежного рабочего колеса	16
1.4.1. Кавитация и кавитационная эрозия	16
1.4.2. Начало кавитации	18
1.4.3. Кавитационный срыв	19
1.4.4. Скорость кавитационной эрозии	
1.5. Расчёт отвода	
1.6. Эскизное проектирование насоса	
1.7. Потери энергии и КПД насоса	
1.7.1. Расчёт уплотнений рабочего колеса	
1.7.2. Расчёт дискового трения	
1.7.3. Расчёт мощности трения в подшипниках и	
вала	
1.7.4. Коэффициенты полезного действия насоса.	
1.8. Профилирование лопастей рабочего колеса	
1.9. Энергетическая и кавитационная характеристики	
1.10. Оценка критериев качества	
2. Чертежи проточной полости насоса	
Приложение	
Список литературы	45

Сергей Семенович Панаиотти Александр Иванович Савельев

АВТОМАТИЗИРОВАННОЕ ПРОЕКТИРОВАНИЕ ОДНОСТУПЕНЧАТОГО ЦЕНТРОБЕЖНОГО НАСОСА

Учебное пособие

Компьютерная верстка Панаиотти С.С.

Формат 60×84/16. Печать офсетная. Бумага офсетная. Гарнитура «Таймс».

Печ. л. 2,9. Усл. п. л. 2,8. Тираж 50 экз.

Отпечатано с готового оригинал-макета в КФ МГТУ им. Н.Э. Баумана 248600, г. Калуга, ул. Циолковского, 25, тел. 77-45-02